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Carnap suggests in the Aufbau that Kant’s division of judgments into syn-
thetic a priori and other variants of synthetic/analytic and a priori/a pos-
teriori judgments can be completely replaced by the conventional and the
empirical (see [2, 289], §179). Carnap often justifies his conventionalism with
respect to language and logic by analogy to conventionalism in geometry.
Expressing a proposition in a natural language is analogous to expressing
a topological fact in a conventional metric. Translating natural language
sentences from German to French, for example, compares to translating a
statement belonging to one metrical spatial form into another (see [1, 99]).

Thomas Mormann’s contention is that, whatever may be true about con-
ventionalism in general, the mathematical discipline of differential topology
does not support conventionalism in geometry. There are higher-level objec-
tions to Carnap’s conventionalism in geometry, for example by Quine, who
considers it incompatible with holism, and by Ryckman or Friedman, who
consider it incompatible with Einstein’s theory of relativity. Mormann argues
that the mathematical problems of Carnap’s account render those higher-
level objections unnecessary. We raise objections to Mormann’s argument
and claim that, whatever else may be said about Carnap’s conventionalism
in geometry, it does not run afoul of mathematical topology.

Let us agree on the convention that the Earth’s surface has zero curvature
everywhere. Mormann’s topological interpretation of this claim is (where S2

is the surface of a two-dimensional sphere)

S2 can be endowed with a metric l1 with curvature K = 0 (C1)

This topology, according to Carnap, does not contradict any geodetic mea-
surements or physical observations. He is not quite happy with this example,
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however, because the metric l1 must give preference to a particular point in
S2. This preference does not sit well with our requirement for simplicity.
Instead of postulating curvature K = 0 everywhere, we have the choice of
postulating K = k everywhere, where k > 0 is the curvature corresponding
to the curvature of S2 given l0, the Euclidean distance measure we are used
to. Now we no longer need a privileged point to define a distance measure
l2 for this topology (also extending it from S2 to R3), which has a positive
curvature k > 0 everywhere:

l2(A,B) = l0(A,B)(1− sinh)

We need a postulate on how to measure h, which Carnap provides with the
following rule: ∫ h

0

1

1− sinx
dx = a

where a is the length of a measuring rod measuring h transferred to S2.
Again, Carnap claims that accepting this topology and metric will not put us
at odds with any empirical observations or measurements. Mormann trans-
lates his claim in terms of differential topology into

R3 can be endowed with a metric l2

with constant positive curvature K = k (C2)

Mormann now provides a proof that, under suitable conditions, both (C1)
and (C2) are false.

For polyhedra, the Euler-Poincaré characteristic χ(T ) is known as the num-
ber of vertices minus the number of edges plus the number of areas. The
theorem of Gauss-Bonnet states that for a compact two-dimensional Rie-
mannian manifold M without a boundary (such as S2), the total Gaussian
curvature is (A being the area element of M)∫∫

M
KdA = 2πχ(M)

The Euler-Poincaré characteristic for an orientable compact surface homeo-
morphic to a sphere with some handles attached is 2−2g, g being the number
of handles. Consequently, χ(S2) = 2, and (C1) is false.

Now let M be a complete connected Riemannian manifold with curvature
K ≥ a > 0 (call this last condition (*)). Bonnet’s theorem states that then
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M must be compact. Because R3 fulfills all these conditions except (*) and
is not compact, (C2) is false. (Both of these proofs see [4, 820f].)

What Mormann initially hides in footnotes (footnote 9 and footnote 12)
and eventually discusses in a section toward the end of his article is that
his idealized mathematical conditions do not necessarily match the prag-
matic constraints Carnap assumes to be true for the physicists doing the
work of finding empirical disconfirmation of physical theories with respect
to applicable conventions.

Mormann clearly disagrees with Carnap on the admissibility of limitation
in empiricist inquiry. This disagreement, somewhat obscure in Mormann’s
article, explains their mathematical disagreement. (C1) and (C2) are not
false, Carnap just never makes clear that he admits limitations and the Rie-
mannian manifolds may not be complete (a space X is complete if every
Cauchy sequence in it converges). Mormann complains that completeness is
“indispensable from an empiricist point of view” [4, 817], that incomplete-
ness “lacks empirical significance” [4, 820], that “it would be a desperate
move to attempt to rescue Carnap’s thesis by allowing him to fall back on
incomplete metrics” [4, 821], and, most relevantly, that

for an empiricist it is meaningless to be engaged in investigating the global

structure of the world under the presupposition that large areas of that world

are principally inaccessible to empirical investigation. (Mormann [4, 823])

In reply to Mormann, first off we need to note that completeness is not the
issue for (C1). Let a plane F go through a point on the radius between the
centre of the Earth and the North Pole (say 6000km away from the centre of
the Earth) and be parallel to the equatorial plane. Then define T 2, think of
it as a punch bowl or a spherical decapitated eggshell, as the intersection of
R3 south of F (including F ) and S2. T 2 fulfills the conditions of the Gauss-
Bonnet theorem, and there is no longer a problem with Carnap’s claim that
T 2 can be endowed with a metric whose curvature is 0, as Gauss-Bonnet’s
theorem for a space with a boundary runs like this (see [3, 260]):∫

∂M
kgds+

∫∫
M
KdA = 2π −

m∑
j=1

α(pj)

where ∂M is the boundary of M , kg is the geodesic curvature of ∂M , and
the α(pj) are the exterior angles of the corners p1, . . . , pm of ∂M .
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Foreboding as this formula may look it actually makes good sense. Our
boundary (the intersection of F and S2) has no corners, so we can ignore
the sum of exterior angles. The concavity of the boundary, however, makes
up for the convexity of the sphere so that it is possible to endow T 2 with a
metric with constant curvature K = 0. You may ask why we did not keep
T 2 open and exclude the boundary, which would also provide us with the
possibility of a metric with constant curvature K = 0. Such a space would
be homeomorphic to R2, very close to what Carnap had in mind, but it lacks
the completeness we were hoping for. In any case, T 2 as defined is complete
and fulfills Carnap’s criteria.

Thus, when Mormann says that with incomplete metrics, while “(C2) could
be saved, (C1) remains false” [4, 821], it remains false because we do not
even need to go as far as retreating to incomplete metrics. We can keep (C1)
by introducing a boundary, or, as Carnap would say, a limitation. It is not
so much mathematical inconsistency that is at the heart of this problem,
but rather a lack of clarity to what extent the limitations of scientific obser-
vation enter into which questions it is in principle possible to answer. Our
impression, unfortunately not based on a clarification by Carnap himself,
is that he includes practical limitations in his account of the limits of sci-
ence. To pose a question, Carnap says in §180 of the Aufbau, “is to give a
statement together with the task of deciding whether this statement or its
negation is true” [2, 290]. If the task is ‘in principle’ impossible to carry out,
which it very well may be (unless ‘in principle’ means just the opposite of
‘in practice’), then it remains open whether the question is properly posed.
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